Extensions 1→N→G→Q→1 with N=C22 and Q=C3⋊Q16

Direct product G=N×Q with N=C22 and Q=C3⋊Q16
dρLabelID
C22×C3⋊Q16192C2^2xC3:Q16192,1368

Semidirect products G=N:Q with N=C22 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C22⋊(C3⋊Q16) = A42Q16φ: C3⋊Q16/Q8S3 ⊆ Aut C22486-C2^2:(C3:Q16)192,975
C222(C3⋊Q16) = C3⋊C8.29D4φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C2296C2^2:2(C3:Q16)192,610
C223(C3⋊Q16) = Dic6.37D4φ: C3⋊Q16/Dic6C2 ⊆ Aut C2296C2^2:3(C3:Q16)192,609
C224(C3⋊Q16) = (C2×C6)⋊8Q16φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C2296C2^2:4(C3:Q16)192,787

Non-split extensions G=N.Q with N=C22 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C22.1(C3⋊Q16) = C24.7Q8φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C22964C2^2.1(C3:Q16)192,52
C22.2(C3⋊Q16) = (C6×Q8)⋊C4φ: C3⋊Q16/Dic6C2 ⊆ Aut C2248C2^2.2(C3:Q16)192,97
C22.3(C3⋊Q16) = (C2×C6).Q16φ: C3⋊Q16/Dic6C2 ⊆ Aut C2296C2^2.3(C3:Q16)192,603
C22.4(C3⋊Q16) = C4⋊Dic3⋊C4φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C2248C2^2.4(C3:Q16)192,11
C22.5(C3⋊Q16) = C4⋊C4.230D6φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C2296C2^2.5(C3:Q16)192,529
C22.6(C3⋊Q16) = C12.C42central extension (φ=1)192C2^2.6(C3:Q16)192,88
C22.7(C3⋊Q16) = C2×C6.Q16central extension (φ=1)192C2^2.7(C3:Q16)192,521
C22.8(C3⋊Q16) = C2×C6.SD16central extension (φ=1)192C2^2.8(C3:Q16)192,528
C22.9(C3⋊Q16) = C2×Q82Dic3central extension (φ=1)192C2^2.9(C3:Q16)192,783

׿
×
𝔽